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Abstract--The penetration of a fuel pollutant from an external source into the groundwater is studied 
theoretically. The fuel migration in the aquifer is affected by viscous, capillary and gravitational forces. 
The contaminant is usually introduced into the main body of the aquifer due to seasonal oscillations of 
the groundwater level. Some portions of the fuel are trapped in the interstices of the porous medium. Other 
fuel portions are subjected to the flow as a continuous or a discontinuous phase. In this paper a 
one-dimensional model is developed describing the transport and accumulation of fuel in these two phases. 
By using power-law dependences of transport and kinetic properties of the fuel upon its saturation in the 
porous medium, several similarity solutions are obtained. The effect of fuel rupture and coalescence upon 
the migration of the bulk volume of the fuel spill is studied by employing a perturbation technique. As 
a result, the details of mass transfer between the continuous and the discontinuous fuel phases are 
provided. 

Key Words: porous medium, two-phase flow, fuel rupture and coalescence, similarity solutions 

I N T R O D U C T I O N  

In the process of  penetration into the aquifer some quantities of  the fuel are trapped in the porous 
medium (Pfankuch 1984; Wilson & Conard 1984). Such trapped fuel quantities comprise the 
residual fuel saturation in the aquifer. Some other fuel quantities are subjected to flow in the 
aquifer. The fuel flowing as a continuous phase is eventually described by the classical laws of  
two-phase flow in porous media (Bear 1972). The process of  fuel transfer between the continuous 
and the discontinuous phases is affected by various surface forces prevailing in the porous 
medium. 

In the present study the process of  fuel transfer between the two phases is modelled by an 
equation describing the kinetics of  the interfacial fuel transfer (Spielman & Su 1977; Soo & Radke 
1986). Such an equation refers to the phenomena of  rupture and coalescence of fuel quantities 
occurring in the porous media. Physicochemical aspects of  these phenomena can generally be 
described by thermodynamic laws (Morrow 1970). 

Several theoretical models refer to the phenomenon of  fuel droplet coalescence in porous media. 
Spielman & Goren (1972), Rosenfeld & Wasan (1974) and Spielman (1977) modelled the porous 
medium as a filter which purifies the water from the fuel droplets by causing their settling and 
coalescence, thereby creating a continuous fuel phase. Payatakes (1982) and Rosenfeld & Wasan 
(1974) accounted for the same mechanism while developing stochastic models of  fuel rupture and 
coalescence. Spielman & Su (1977) carried out some laboratory studies demonstrating that the rate 
of  growth of  the discontinuous phase depends on the degree of  saturation of  the continuous and 
the discontinuous phases provided that the total fuel saturation is low. 

Dependences of  the capillary pressure and the hydraulic conductivity upon the degree of  
saturation can be determined experimentally, assuming that the equilibrium between the con- 
tinuous and the discontinuous phases prevails. However, even if equilibrium conditions seem to 
take place in an experimental setup, frequently transfer processes between the continuous and the 
discontinuous fuel phases may continue (Morrow & Harris 1965). Usually a balance between 
different surface forces typical to the solid and fluid phases present in saturated porous media, 
prevails after a comparatively long time period. 
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In experiments of imbibition the nonwetting phase moves slower than the wetting phase due to 
the tendency of the latter to by-pass the nonwetting phase. If the characteristic size of some pores 
is comparatively large and that of other pores comparatively small, then the phenomenon of 
"snap-off" may take place in which the fuel body is subject to rupture followed by trapping of 
some fuel quantities. 

Another important phenomenon typical to flow of two fluid phases in porous media is called 
"Haines jumps" (Morrow 1970; Adler & Brenner 1988). This phenomenon is characterized 
by instantaneous changes of the capillary pressure caused by the process of build-up of fluid 
menisci in a porous medium. Morrow (1970) and Levine et al. (1980) claimed that Haines 
jumps should be attributed to abrupt changes in the characteristic diameter of the capillaries 
of the porous medium, leading to fuel transfer from metastable to completely stable con- 
ditions. Chen (1986) claimed that Haines jumps should be attributed to rupture or coalescence 
processes. 

The objective of this study is to develop a quantitative model able to account for all the kinetic 
effects discussed in this section. We study the influence of the total fuel mass present in the porous 
medium on the fuel saturation profile and on the mass transfer between the continuous and the 
discontinuous fuel phases. 

In general, the fuel saturation strongly depends on the capillary dispersion and the flow velocity. 
Due to this dependence the fuel transfer problem possesses a highly nonlinear character. This 
problem is treated here by utilizing the symmetry properties of the governing equations, thereby 
yielding several valuable similarity solutions. 

In subsequent studies (Pistiner et al. 1989a, b) we investigate the influence of the pore size index 
of the porous medium and of the fuel viscosity on the advancement of the fuel saturation profile, 
the mass transfer and the kinetic processes occurring between the two fuel phases. 

BASIC EQUATIONS 

Consider an immiscible mixture of fuel and water transported along the x-axis in a homogeneous 
and isotropic porous medium. We will assume the gravity forces to be negligible and the fuel 
saturation of the continuous and the discontinuous phases to be sufficiently low. Under these 
conditions the respective specific discharges qw and qr of water and fuel are described by Darcy's 
law (Bear 1972): 

KK~ (St) dPw 
qw = [1] 

#w c~x 

and 

Kgrf (Sf)  OPt 
qr = [21 

#f Ox 

with the relative permeabilities, K~w and Krf depending upon the fuel saturation, Sr (Bear 1972; 
Adler & Brenner 1988); and where x is the permeability of the porous medium,/~f and/~w are the 
fuel and water viscosities, respectively and Pr and Pw are the fuel and water pressures, respectively. 
The fuel and water saturations, Sr and Sw, are related via the equation 

Sf + Sw = 1, [3] 

representing the fact that the porous medium is fully saturated by fuel and water. Pf and Pw are 
related via the capillary pressure Pc as follows: 

Po(Sf) = P r -  Pw, [4] 

where 

dP¢>o" 
dSr 
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The conservation of mass for each fluid in a nonexpansive porous medium yields 

and 

Oqw OSw 
o-)- + ¢ --~- = 0 

0qf 0Sf 
~S + ¢ -b7 = 0  , 

where ¢ is the porosity of the porous medium. Combining [1]-[6] we obtain 

OSr d ( OSf'~_ OF 
r~ O--[ = O--x ~ -~x ] q O---x' 

where 

q = qw + qr 

and the fractional flow curve F and the function T are given by (Bear 1972) 

F(Sf) = 1 + Krf#w/ 

and 

where 

KrwPc(Sf) 
Pw 

IP(Sr) - (1 ..v. K___~). Kr,a, pf '~ ' 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

dPc(Sf) 
P ; ( & )  = _ _  

dSf 

The fuel saturation Sf can be expressed as follows (Morrow & Harris 1965; Spielman & Su 1977; 
Ramakrishnan & Wasan 1986): 

Sf = Sf + Sq , [11] 

where Sfo is the degree of saturation of the continuous phase which moves according to the law 
of two-phase flow and Srd represents the degree of saturation of the stagnant discontinuous part 
of the fuel phase. 

The parameters appearing in [9] and [10] may be assumed to depend only on Sro (Spielman & 
Su 1977). It is also assumed that the fuel transfer between the continuous and the discontinuous 
phases can be described by employing an isotherm represented by the following equation: 

o&~ -_ kl S~o - k2S~. [12] 
0t 

Here kl and ks are the kinetic coefficients of fuel transfer due to the rupture of the continuous 
phase and the coalescence of the discontinuous phase, respectively; u and w are positive constants 
which are determined from experimental data (Spielman & Su 1977). The kinetic equation of this 
type was used by Spielman & Su (]977) and by Payatakes (1982) to describe the fuel transport in 
porous media. Hougen & Marshal (1947) used [12] with u = w = 1. We will use this equation 
without the latter restriction so that to account for the nonlinear character of the adsorption- 
desorption processes. 

Our goal is to investigate the effects of the rupture and the coalescence processes upon the fuel 
transport. It must be noted that the rupture and the coalescence processes are described by the 
characteristic times I/k, and I/k2, respectively. 
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Fuel pollutants which are trapped in porous media may occupy no more than 50% of the pore 
volume (Wilson & Conrad 1984). In such cases it is possible to represent F(Sfc ) in [9] by a power-law 
relationship (Bear 1972; Ramakrishnan et al. 1988): 

F(Src) = FoS~ c, [13] 

where the parameter n is a function of the viscosity ratio Pf/Pw, and F0 is a scaling parameter. When 
F(Sf¢), given by [9], contains an inflection point, [13] is valid only when the fuel saturation is low. 
In addition, the derivative of the capillary pressure P~(Sfc ) and the relative permeability K~w 
appearing in [10] obey the following relationship (Ramakrishnan et al. 1988; Yortsos & Fokas 

1983): 

P~(Sfc)K~(Src ) = AoSfc  m, [141 

where 

A 0 = )'fw PcoK~o . [15] 

Here Yfw is the fuel-water surface tension coefficient, Pco and Kr0 are positive constants which 
together with dimensionless coefficient m are determined by the pore-sized distribution of the 
porous medium. Equation [14] implies that the slope dPc/dS ~ ~ as the saturation approaches 
zero. It should be noted that [14] assumes negligible changes in K~ for low fuel saturations 
(Ramakrishnan et al. 1988). 

Using [9] and [13]-[15] one can rewrite the function T(Sfc ) given by [10] in the following 
form: 

Ilg(Sf¢ ) = KKro FoPco,~fwS~¢- m [16] 
#w 

In the following, we will drop the subscript f when referring to the fuel saturations of the 
continuous and discontinuous phases, denoting them by & and Sd, respectively. 

M A T H E M A T I C A L  F O R M U L A T I O N  

We define a characteristic convection length, L, and a characteristic convection time, T, as 
follows: 

and 

L = ~:Kro P¢o [17] 

L~  
T - [18] 

qFo 

and introduce dimensionless spatial and temporal coordinates: 

x~  
.~ = - -  [19] 

L 

and 

tN~ 
t = T '  [20] 

where 

No= t~wq [21l 
Vfw 

is the capillary number. 
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Expressions [7] and [12] rewritten in terms of dimensionless variables [19] and [20] adopt the 
following forms: 

as ~Js 
~-~ + ~ = 0 [221 

and 

t~Sd ¢u 1 Cw 
E ~ -  = ~'c -- ~ ~'d, [23] 

where S = Sc + Sd is the total degree of fuel saturation, ,Is is the flux of the fuel saturation and 
k = k~/k2 is the coefficient expressing the ratio between the rupture and the coalescence kinetic 
constants; k may be also interpreted as a ratio between the characteristic times of fuel coalescence 
1/k2 and rupture 1/k~. The dimensionless parameter e appearing in [23] is defined by 

Nc 
- kl T" [24] 

The fuel saturation flux Js  appearing in [22] possesses the following form: 

8S~ [251 Js  = s~ - s"¢- "~ a--~ 

Our objective is to solve [22] and [23] in the infinitely extended porous medium ( -  ~ < ~ < + ~) .  
Accordingly, the saturation S¢ and Sd are subjected to the following boundary conditions: 

S~ (~, f) ~ 0 [x l ~ ~ [26a1 

and 

Sd (~, f) ~ 0 1~[ ~ oo. [26b] 

The problem posed by [22], [23], [25] and [26a,b] must be solved for specified initial conditions 
imposed upon S~ and Sa. This problem, as posed above, describes the transport and accumulation 
of a given quantity of fuel initially (at time t = 0) distributed in the porous medium between the 
continuous and the discontinuous phases. 

The total amount of fuel present in the porous medium is characterized by the characteristic fuel 
length LM, given by 

LM = (S~ + Sd) dx. [271 
- o o  

In the comparable three-dimensional case this quantity must be replaced by the characteristic fuel 
volume. In the present circumstances LM may be interpreted as a characteristic volume per unit 
cross-section of the porous medium. This parameter represents a conserved property. The fact, that 
LM is time independent may be verified by integration of [22] from 2 = - ~  to 2 = + oo using 
boundary conditions [26a, b] imposed on S~ and Sd. We can thus define a dimensionless parameter 

Mo = N~LM = N ¢ L ~  = [Sc(~, ?) + Sd(~, 1)1 d,~ [281 
L 

which may be interpreted as a dimensionless fuel mass. Owing to the presence of the capillary 
number N~ and the convection length L, this quantity depends upon the capillary and the convective 
phenomena occurring in the porous medium. 

We will be specifically interested in circumstances where the rupture and the coalescence 
processes are characterized by comparable characteristic times, each of them being much smaller 
than the characteristic convection time. These conditions may be described mathematically by the 
following relations: 

k = 0(1) [29] 

and 

E ~ 1. [30] 
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The case E = 0 describes the situation where a dynamic equilibrium exists between the fuel 
rupture and coalescence processes and the saturations S~ and S0 are related by the following 
equation: 

1 SW/. S¢ = ~ d • [31]  

The solution developed in the next section for small values of E thus appears as a perturbation 
solution with respect to the equilibrium saturation distributions. 

SOLUTION OF THE PROBLEM 

The solution of the problem posed by [22], [23], [25] and [26a,b] is developed by the expansions 
of Se, Sd and Js in the power series of E: 

Sc(~?, t, E) = S%(~, t) + ES~,(~, t) + . . . ,  [32a] 

Sd()~ , t, ~)  = ad0(X , ~) "1- ~Sdl(.~ , t )  "1- " " " [32b] 

and 

Js(YC, t, E) = J*o(YC, t) + eJ* (Yc, t) + . . . ,  [33] 

where the zero-order functions S~ o, Sd0 and J*0 refer to quantities which prevail in the equilibrium 
conditions. Introducing expansions [32a,b] and [33] into [22], [23], [25] and [26a,b] we obtain the 
following sequence of problems: 

zero-order problem, 

and 

first-order problem, 

a(&o + &o) aJ~o af + - ~ -  =o, 

s~-.,aSoo, 
J*o= S~o-  o ~Yc 

1 
so o = ~ S~o, 

Soo(~, 0 -~  o I~1 -~ ~ ;  

a(&, + so,) aJ~, 
at + - ~ -  =o, 

as~ s~ -mast' ~-nS ~"- '  J ~ ' = ( n - m ) S ¢ ' S ~ ° m - ~  aS¢ o a~ - c,~¢o , 

W 
(~Sd0at = uS¢O/~ - |  S o l - k  Sd0 Sd I ' 

so,(~, 0 - . 0  I~1-~ ~ .  

[34] 

[35] 

[36] 

[37a] 

[37b] 

[38] 

[39] 

[40] 

[41a] 

[41b] 
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We will further look for simultaneously existing similarity solutions of the problems posed by 
[34]-[37a,b] and [38]-[41a,b]. These solutions implicitly assume that the saturation functions Sc0, 
Sd0, Sc~ and Sd, achieve certain asymptotic forms in which they are described by a single variable 
~, given by (Barenblatt 1979) 

= ~t-°, [42] 

where a is a constant to be determined below. The solutions for the zero- and first-order saturation 
functions are sought in the following forms (Ramakrishnan e t  al. 1988): 

S~0=L0 tb, S d o = f d o F ,  S ¢ = f ¢ , t  d, S d = f d ,  t t, [43a-d] 

where the functions f~0. fd0, fc~ and fd~ depend upon ~ only and b, c, d and l are constant values. 
The existence of the similarity solution implies that 

u = w, b = c. d = l. [44a-c] 

Introducing the trial solution [43a~1] into condition [28] we obtain 

M 0 = t  °+b (f~ +fd.) d~ + j a + .  (f~, +fd,) d~. [451 

The requirement of mass conservation yields the following additional conditions: 

a + b = 0 ,  m = 2  [46a.b] 

and 

f +~ (L, +fd,) d~ =0.  

Equations [44a-c] and [46a,b] combine to yield 

1 
a ~ -  

n 

and 

[47] 

[48a] 

$ / - - n  m 2  
d = t = [48c1  

n 

It thus follows that transformations [42] and [43a-d] adopt the following forms: 

= yc t - , / .  

and 

Sc0=L0 f t/.. S d o = f d o t - l / .  ' S c = L , f (  . . . .  ~)/., S d = f d ,  t ( . - . - 2 ) l .  " 

Introduction of So0 and Sd0, given by [43a,b], into [34] and [35] for the zero-order problem after 
some simplifications yields the following ordinary differential equations: 

( f .  f . - 2 1 + k TM "x " 
o-'¢o - f ~ o  + n ~f~o) = 0  [49] 

and 

fdo = k'/"f¢o. [501 

Boundary conditions for the zero-order functionsf¢ 0 andfd0 are obtained from [43a,b] and [37a,b]: 

f~, fdo ~ 0 [~[--* O0. [51a,b] 

1 
b = c = - - ,  [48b] 

n 
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The first-order problem [38]-[41a,b] in terms of  the new variables given by [43a--d] adopts the 
following form: 

F 2f"- ' f  - l + k  '/~ +~_ ]' u - n - I  __ _ _  ..4_ l g n -  2 f  ' 
~ 2 ¢. 0 .1121 J [_- ~c0 ,c, (n 2) n f~' ~ n (f~, + f d , )  n (f~, + f d , ) ,  [52] 

fd~ = kl/"f~' +--un f ~ . + ~ f ) . _ ~ 2  --------~f~-"-"l +k ' /"  [53] 

f~ ,fd, ~ 0  I~I~OO. [54a,b] 

The zero-order problem [49]-[51a, b] may be simplified. Indeed, integration of [49] yields 

1 + k  t/" n f , -2 f ,  + - - ¢ f ~ o - f c o  C,, [551 ./ c 0 , . 'C O -- 
n 

where CI is an integration constant. We will assume that f120 and f~o decay sufficiently fast so that 
all terms appearing on the 1.h.s. of  [55] tend to zero when Ill ~ ~ .  Therefore we obtain C~ = 0. 
As a result, [55] reduces to 

t 
f~o =f~0 

Introduction of [43a-d] into [32a,b] gives 

1 + k  I/" 3 - n  - -  ~f120 • [561 n 

S c ( f ¢  , [ ,  E )  = t - l / " ( f e o  + Et  ( . . . .  I)/"fcl)  + O ( E  2 )  [57a] 

and 

Sd(~, t, E) = t-'/"(fd0 + El( . . . .  W"fd,) + O(E2). [57b] 

These equations indicate that 

u - n - 1  
< 0, [58] 

n 

which is dictated by the requirement of the smallness of the second terms on the r.h.s, of [57a,b] 
for t ~ .  

ANALYSIS  OF THE L I M I T A T I O N S  IMPOSED ON n 

Expression [56] together with the boundary conditions [51a,b] yield the following asymptotic 
behavior: 

1 + k  ~1" / 
f~o ~ - -  ¢ f 3 - .  [¢1---, ~ ,  [59] 

n 

which is valid at least for n/> 1. Integration of  [59] gives 

1 

f~°~[ (2  - n) 1 + k'/u ~ 2 2 n  + C2],/a_, ) [~[ ~ ~ .  [60] 

The condition of  positiveness of the denominator in [60] yields the following limitation imposed 
upon n: 

n < 2. [61] 

Straightforward analysis of  [59] shows that the case n = 2 also yields the rapidly decaying 
asymptotic behavior off% as 1~[--* ~ .  We will further consider the following range of  n: 

1 ~< n ~< 2. [62] 

The case n > 2 leads to the formation of  the fuel-water free boundary and is treated in a subsequent 
paper (Pistiner et al. 1989a). 
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ANALYSIS  OF THE G L O B A L  F U EL M I G R A T I O N  

The similarity solution developed above describes the global migration of  a fuel slug initially 
introduced in the porous medium. Here we utilize the transformation [48a] to evaluate the mean 
propagation velocity of the fuel slug, defined by 

d~ 
V = - -  [63] 

d t '  

where Y is the mean fuel displacement: 

1 f + ~  = Moo ~[Sc(~, t) + Sd(~, f)] d~. [64] 
-o0 

The rate of fuel spread is described by the mean square displacement: 

(~ _ ~)2 = ~ -~ (~ - ~)2 [Sc(~, t) + Sd (~, t)l d~. [65] 

Introducing [43a] together with [48a,b] into [63], [64] and [65] we obtain (neglecting the first-order 
terms): 

1 -")/" (1 d~ [66] V = ~ t {' + kl /u)~f~ 
J--oO 

and 

1 2 I +°° 
(.~ __ ~)2 = ~ 0  ~ /n (1 +k'/")f~o(~ - ~)2 de. 

-oo 
[67] 

The integrals on the r.h.s.s of  [66] and [67] are numbers that can be evaluated for each set of 
n, k and u. Therefore [66] and [67] exhibit time dependences of the mean velocity and the mean 
square displacement as follows: 

V ~ ~(1-n)/n 

and 

(~ _ ~)2 ~ f2/.. 

It is interesting to note that for n = 1 the fuel profile propagates with a constant velocity. In the 
considered range 1 ~< n ~< 2 the fuel velocity decays with time. When n = 2 the rate of fuel dispersion 
is constant. This conclusion may be also drawn directly from [35]. 

A L T E R N A T I V E  I N T E R P R E T A T I O N  OF THE Z E R O - O R D E R  S O L U T I O N  

Equations [34] and [35] with m = 2 (which is a necessary condition for the mass conservation) 
combined with [42], [43a,h], [48a,b] and [56] may be rewritten in the following form: 

aSco  Jso 
0f + ~ = 0, [68a] 

where 

is the reduced fuel saturation flux. 

JSo = S¢°y¢ - J*o [68b] 
nt  (1 + kl/")" 
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This is the kinematic wave equation in which the wave velocity is 5c/(nt). It may be seen that 
this 2 and t dependence of the wave velocity does not lead to shock formation (Tondeur 1987). 
An elementary analysis of [68a,b] yields the following characteristic solution: 

and 

= Xt-- l /n  [69a] 

&o =Lo(¢) t-'/", 

which explicitly reproduces the similarity variables in [42] and [43a]. 
One can also rewrite [68a] in the following form: 

~Sco wc OSco 
Of + 8fc 

where 

and 

[69b] 

= 0, [70a] 

[OJso-] S F 8Us] [70b] 
wo = L~So0J, = Us + O0L~s~0j ' 

2 
~ m  Us nt" 

This form will be useful in analyzing the effect of the characteristic fuel mass M0 upon the saturation 
profile. 

ANALYTICAL SOLUTIONS OF THE ZERO-ORDER PROBLEM 

Equation [56] for n = 2 is a Riccati-type equation possessing the following solution: 

exp( 1 4kl/~ ~2 ) 

f%(~) = 2k l /~  ) . [71a] 

The value fc0(O) is related to the dimensionless total fuel mass Mo as follows: 

= tanh [72] 
7[ 

with the following limitation imposed upon f%(0): 

< / 1  + k ~/~ 
Ao(0) 

Substitutingf,0(O ), given by [72], into [71a] one can rewrite the solution for f%(~) in the following 
form: 

f%(~) ~/1 + k  t/~ 
= G ( ( ) ,  [71b] 

7~ 

where G is a function of the variable ( = ~(x/1 + k~l"12). Since k does not appear explicitly in 
G((), [71b] is helpful in revealing the influence of this parameter on the saturation function 
fc0(¢). For a given M0, an increase in k decreases the fuel mass present in the continuous phase and 
leads to a sharper saturation profile with the maximum value of the saturation growing 
proportionally to x/1 + k ~/~. 
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For n = 1, [56] possesses the fol lowing analytical solution: 

1 
= 

1 +kt/u 2' 
f ;o '  (0) - ~ + ----T-- ~ 

where fc0(0) is related to the dimensionless mass Mo via the relationship 

2(1 + k l / " )M 2 
f~o(O) = Mo2 + 4rc2(1 + k'/u) 2" 

It is clear that fc0(0)< 2(1 + k~/u). 

[731 

[74] 

DISCUSSION OF THE ZERO-ORDER RESULTS 

Figures 1-4 depict the propagation of the saturation profiles for the cases n = l and n = 2. 
Figures 2 and 4 describe the case where LM >> L, namely an infinite dimensionless mass M0. Figures 
2 and 4 describe the propagation of the saturation profiles in the water flow direction. On the other 
hand, figures 1 and 3 describe circumstances where the fuel moves against the flow of water. Figures 
1-4 clearly exhibit the phenomena of fuel imbibition and drainage in the porous medium. However, 
at a given location within the porous medium these phenomena may be better observed in figures 
5 and 6, depicting the relationship between the fuel flux and the saturation for several given time 
values (see [68a,b]). Each of the curves shown in figures 5 and 6 may be characterized by the 
following regions, specified in figure 5: 

(1) region AB describing fuel drainage against the water flow direction; 
(2) region BC describing fuel imbibition in the water flow direction; 
(3) region CD describing fuel imbibition against the water flow direction; 
(4) region DA describing the fuel drainage in the water flow direction. 

Comparing the data shown in figure 5 obtained for finite M0 with the data in figure 6 obtained 
for infinite M0 we can see that for increasing M0, the fuel convective transport is enhanced with 
respect to the transport due to fuel dispersion against the water flow direction. 

o 

o 

O 
t/) 

0.40: 

0.55 

0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

O.OO 

I i ~ I I I ] 

.• K - I  

t- l .5 u - i 
~ "  n - 2  

M o" I 

I i 1 I I i T t 
0 2 4 6 

D i s t a n c e  , ~ - . ,  x btw q 
Kro P% Yfw 

- 6  - 4  - 2  

Di m e n s i o n l e s s  

Figure 1. Propagation of the saturation profile for low M0 (zero-order solution, m = 2). 
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Figure 2. Propagation of the saturation profile for high M 0 (zero-order solution, m = 2). 
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Figure 4. Propagation of the saturation profile for high M 0 (zero-order solution, m = 2). 

The value of the group velocity W c given by [70b] is represented by the slope of the curves 
appearing in figures 5 and 6 (see [70a]). We will now analyze the behavior of Wc for very large 
M0 (see figure 6). Towards this goal use [56] to express the location, ~m, of the maximum value 
of the function f~0(~) in the following form: 

~,,, = nf~o- ' (~m) 
1 + k I/" " [75a1 
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Figure 5. Fuel flux vs fuel saturation for several values of time (zero-order solution, low M0). 
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Figure 6. Fuel flux vs fuel saturation for several values of time (zero-order solution, high M0). 

We consider the following cases. 

n = 2  

The information for this case is shown in figure 6. For n = 2 [75a] reduces to 

2fc0(¢m) 
~m = 1 + k ~/"" [75b] 

Analysis of [71a] and [72] shows that the maximum value offc0--* oo for increasing values of the 
dimensionless mass M0. Equation [75b] shows that the location of that maximum moves towards 
larger values of ¢ when M0 ~ oo. It can be shown that 

~/  M0 [76a] 
~m. < 2  l + k ~ / ,  ' 

The value appearing on the r.h.s, of [76a] may be used as a satisfactory estimate for ~m. for large M0. 
The descending branch of the zero-order similarity solution is characterized by a sharp transition 

from a very large to a small (almost zero) value off~ 0. The approximate location ~m, of this sharp 
transition can be found numerically for every M0 via [71a]. Accordingly, figure 2 shows that with 
an increasing M0 the region of fuel imbibition becomes large (cf. figure 1, obtained for M0 = 1) 
while drainage occurs in a very narrow range of ~, immediately reducing S~ o to zero. This sharp 
stepwise behavior of So0 reflects a comparable property of the function f~0(~) discussed above. 

Fuel saturation flux at the point ~ = ~,, can be obtained by introduction of [69b] and [75b] into 
[68b], thus resulting in 

2 
Js0(~m.. t) = S°°(Xm" t) 

1 + k t/" ' [76b] 

where 

3~m, = ~ m , t  I/2 

and the group velocity at the ascending branches in figure 2 adopts the following form: 

FOJso7 2S¢0(~m,, f) 
wo = [ ~ j , =  l + k l , .  [76c] 
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Equation [76b] describes the lowermost parts of curves common to all values of  the time f 
represented in figure 6. The time-independent behavior of these ascending branches stems from the 
assumed time-independent character of the specific discharge in [8]. The velocities given by [70b] 
of the descending branches of  the saturation profiles depicted in figure 2 may be shown to exhibit 
the following behavior: 

Wcl+m.+0 [77] 

and are described by the upper parts (almost straight lines) of the curves plotted in figure 6. From 
[77] it can be seen that the velocity of the descending branch decays with time. 

n = l  

In this case we obtain from [75a]: 

1 
~m = 1 + k t/u" [78] 

The position of  the maximum saturation is independent of  the fuel characteristic mass M0. By using 
the same procedure as in the previous case we obtain 

W+ - - , + - -  as Mo-+ + .  
1 + k  ~/"' 

In these circumstances the fuel saturation profile moves with a constant velocity along the flow 
direction, as shown in figure 4. 

In general, an increase in n from n = 1 to n = 2 leads to an enhancement of the convective fuel 
transport with respect to the dispersive transport. 

THE F I R S T - O R D E R  S O LU TIO N  

It may be seen from [23] that the kinetic processes are governed by the dimensionless time 

f tk~ 

E No' 

This means that the long-time limit f ~ ~ is equivalent to the case of a very fast kinetic process 
described by kl ~ ~ (Arc is a constant number in this problem). Referring to [24] we can see that 
the latter condition may be interpreted as E ~ 0. That  is, for a given rate of convection-diffusion 
processes the fuel exchange between the continuous and the discontinuous phases occurs very fast, 
so that one witnesses an equilibrium prevailing between these phases. The observed equivalence 
between the two cases f ~ ~ and E -~ 0 is further used to formulate additional conditions imposed 
upon the first-order saturation functions Sd, and So,. Indeed, observing [22], [32a,b] and [33] one 
can state that 

S¢,(.~, t) + Sd,(~, f) = 0 t --* ov [79a] 

* A 
Js~ (x, f) = 0 ! ~ oo. [79b] 

This means that for asymptotically long times (~ ~ 0 )  fuel saturation is represented by the 
zero-order functions only. In order to reformulate these boundary conditions in the self-similar 
form we use [42] and [48a] which immediately yield 

f¢, (0) +fd,(O) = 0 [80a] 

and 

- 2f¢, ( 0 ) f  ~0- ' (0) + f  ~, ( 0 ) f  ~0 -2 (0) = 0. [80b] 
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The solution of the problem posed by [22]-[26] in the physical plane (~, t) obviously depends 
upon the specified initial condition. However the similarity solutions for S~0, Sd0, S~, and So~ in the 
form [48a] do not generally reproduce the chosen initial fuel saturation profiles. However, the 
zero-order functions exhibit the following short-time dependences: 

So0, Sd0 ~ 6 (~), as t --, 0, 

where 6(~) is the Dirac 6-function. 
It should be noted that the existence of the self-similar solution reflects the property of the 

function ~q(~, f), that it "forgets" the initial saturation profile. Eventually it tends to the above 
developed similarity solution for asymptotically long times. Both solutions in the ~ - f and the 
self-similar domains are characterized by the same value of the total amount of fuel or the 
characteristic dimensionless fuel length L*,  given by [28]. 

Figures 7 and 8 show the first-order saturation solutions, f~, and fd,, appearing in [52]-[54a,b]. 
In general these functions represent the deviation of the saturations Sc and Sd from their equilibrium 
values S% and Sd0 (see [57a,b]). Figures 7 and 8 indicate that for asymptotically long times (~ ~ 0) 
Sd~ > 0, So, < 0. Hence the continuous phase contains less fuel than it does in the equilibrium 
case (E = 0). 

Figures 9 and 10 exhibit the temporal evolution of the fuel saturation in various points ~ with 
and without kinetically induced distortion for low M0. The saturation fluctuations observed in 
figure 10 may be identified with the above-described "Haines jumps" which are mentioned in the 
introduction of this article. Our results reveal that this phenomenon stems from the movement of 
fuel menisci due to rupture and coalescence of the fuel phase, prior to reaching the equilibrium 
state. This confirms the earlier observation of Chen (1986). 

We define a ratio KL between the typical fuel lengths of the discontinuous and the continuous 
phases as follows: 

k l/" d~ + J (  . . . .  1)/. fd~d~ 
K L = J - ~  - ~ Ldi~c.  

- -  L . . . .  ' [ 8 1 ]  

f~o d~ + J(  . . . .  i)/. f~, d~ 
oo d-zc 

which is plotted in figure 11 vs time. For long times the ratio KL(E , [)  tends to the value k-  ~.'", 
thereby describing the equilibrium situation. However for earlier times, before the equilibrium is 
achieved, more fuel is present in the discontinuous phase than in the continuous phase thus 
resulting in larger values of KL as indicated in figure 11. 

Figure 12 indicates that for low M0 the function f%(~) tends to be symmetric, namely 
f¢0(-~) =f~0( +~)" It means that the capillary dispersion is more intensive than fuel convection, 
whereas the latter generally causes an asymmetry in the fuel distribution. As a result, we observe 
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Figure 7. First-order similarity solution profile (f~,). 
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more fuel drainage rather than imbibition, as indicated by figures 9 and 10. As evidenced by [53], 
for long times (~ ~ 0) more fuel is present in the discontinuous rather than in the continuous phase. 
This fact, of course, is true only for times preceding the equilibrium state, e.g., for finite t, since 
for the equilibrium state the distribution of fuel between the phases is entirely governed by the 
kinetic constant k. 
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Figure 10. Temporal evolution of fuel saturation at various points ~ in the absence of equilibrium. 
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We finally observe that the imbibed fuel in the continuous phase tends to be ruptured and left 
behind in the discontinuous phase. 

S U M M A R Y  A N D  C O N C L U S I O N S  

The migration of fuel pollutant in porous media is modelled by means of the equations describing 
mass transport and kinetic processes occurring in the moving (continuous) and the residual 
(discontinuous) phases. 

In this study we referred to the problem of fuel pollutant migration through a porous medium, 
where it was assumed that continuous and discontinuous fuel phases are subjected to a dynamic 
equilibrium existing between them (in the zero-order problem). 

The distribution of fuel between the continuous and the discontinuous phases is affected by the 
partition coefficient k, governing the equilibrium condition (cf. [13]). Our results provide a 
quantitative measure for the fuel saturation in both phases, which may be obtained utilizing the 
experimentally determined (Land 1968, 1971) coefficient k. 
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Figure 12. Zero-order similarity solution profile (f~) for low M0.  
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In contrast with existing models (e.g. Bear 1972; Ramakrishnan et al. 1988) assuming the 
discontinuous (residual) fuel saturation to be constant and uniform, our treatment described the 
accumulation of the residual phase and its migration in the porous medium. This migration is 
modelled as occurring due to the fuel exchange between the residual and the continuous flowing 
fuel phase. 

The influence of the total amount of fuel M0 present in the porous medium on the rate of kinetic 
processes of fuel rupture and coalescence was investigated. It was found that for low values of M0 
small deviations from the dynamic equilibrium lead to the "Haines jumps" phenomenon. 

It is found that for low values of the dimensionless characteristic fuel length scale, L*,  the kinetic 
processes are slow compared to the convective-dispersive fuel transport. On the contrary, for high 
values of L* the kinetic processes occur much faster than the fuel transport, so that an equilibrium 
prevails between the continuous and the discontinuous fuel phases. 

For low values of L* the effect of the capillary dispersion is to enhance the fuel imbibition leaving 
more fuel in the discontinuous phase until the equilibrium state is reached at later times. 
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